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1 Introduction

Sequence-to-sequence (Seq2Seq) neural networks
have been proved to be effective in tasks that in-
volve transforming text from one form to another
(e.g. machine translation and speech recognition).
They can also be used to generate summarization
from text input. In this project, we compare summa-
rization results of a non-deep learning method and
results of different implementations of the seq2seq
network. The deep learning implementations in-
clude using Bi-directional long short-term memory
(BiLSTM), additive attention, and teacher forcing
in the seq2seq network. More advanced approaches
using pointer-generator and coverage are also ap-
plied to improve the summarization results.

2 Related Work

Our project is motivated by and built upon pre-
vious research in machine translation. Sutskever
et al. (2014) et al proposed the Seq2Seq structure,
in which a LSTM layer is used to encode the in-
put text to a vector of fixed dimensionality and
another LSTM layer is used to decode the target se-
quence from the vector. Expanding on the structure
of Seq2Seq, Bahdanau et al. (2014) showed that
adding an additive attention extension may help
the network search a set of positions where the
most relevant information is concentrated and pre-
dicts the target word based on the context vectors
associated with these source positions. Vaswani
et al. (2017) built on the self-attention model and
created multi-attention, which allows the model to
jointly attend to information from different repre-
sentation subspaces at different positions. Going
back to the early days of recurrent neural networks
(RNNs), a method called teacher forcing was used
to help RNNs converge faster. When the predic-
tions are unsatisfactory in the beginning and the
hidden states would be updated with a sequence

of wrong predictions, the errors would accumu-
late. Teacher forcing was shown to mitigate this
problem (Williams and Zipser, 1989). In 2017, See
et al. (2017) applied a new structure using a pointer-
generator network that can copy words from the
source text via pointing and coverage to keep track
of the content that has been summarized to avoid
repetition. Our project adopts these breakthrough
networks and features step by step and shows the
improvements on our specific abstractive summa-
rization task.

3 Methods

3.1 Data

We use “All the news” dataset published by Thomp-
son (2019). This dataset contains 204,135 news
articles with headlines from 18 different American
publications. It is an updated version of tbe dataset
posted on Kaggle, containing over 50,000 more
articles from a great number of publications.

3.2 Preprocessing

We use TorchText to preprocess our data. We define
a field called TEXT for both the news articles and
headlines. First, we define the TEXT field to be
sequential and padded to a fixed length of 50. The
articles and headlines are tokenized using spaCy
and padded with a start token “〈 SOS 〉” and end
token “〈EOS〉.” The final training dataset contains
170,000 pairs of articles and headlines, while the
validation dataset contains 20,000. We then build
the vocabulary and create the word embeddings
using GloVE with dimension size of 100. Finally,
the training and validation dataset are passed into
BucketIterator to generate data loaders for PyTorch
in batch size of 32 and sorted by the length of
articles.



Figure 1: Project Pipeline

Method Model Highlights Architecture Hyperparameters
Non-DL
Baseline

LSA Summa-
rizer

Linear, rule-based TF-IDF matrix singular
value decomposition

None

DL
Baseline

Seq2seq

Baseline
- LSTM
- BiLSTM
- GRU

RNN Encoder + RNN
Decoder

Default*

Improved

Additive
Attention +
Teacher
Forcing

Attention: creates
context vectors that
are weighted sums
of the encoder hid-
den states
TF: uses ground
truth from previous
time step as decoder
input

RNN Encoder +
Attention + RNN
Decoder, TF algorithm

Default*, Teacher
Forcing Ratio =
0.3

Advanced
Pointer-
Generator +
Coverage

Pointer Generator:
copy words from
the source text
Coverage: penalize
repeating words

Pointer-Generator: adds
generation probability
Coverage: adds vector
to attention, additional
loss term

Default*

Table 1: Default*: All neural network models, if not otherwise specified, have learning rate = 0.001, number
of neurons in the encoder output hidden layer = 256, word embedding dimension = 100, input text length = 50,
output text length = 50, single BiLSTM layer in encoder, single BiLSTM in decoder, loss function = Cross Entropy,
optimizer = Adam.



3.3 Model

In this section we describe the methods we tried
over the course of this project. First, we use (1)
LSA as a non-deep learning baseline. For our deep
learning baseline model, we start by implementing
(2) sequence-to-sequence (Seq2Seq) model, a basic
encoder-decoder model with RNNs, then improve
our results by (3) adding attention mechanism and
teacher forcing to the Seq2Seq model, and finally
introduce (4) pointer-generator model with a cov-
erage mechanism as an advanced deep learning
approach.

3.3.1 LSA
Latent semantic analysis (LSA) (Steinberger, 2014)
uses singular value decomposition (SVD) on the
term frequency-inverse document frequency (TF-
IDF) matrix of a text input to extract the highest
weighted sentence from the right singular matrix
to be the output summary. This extractive summa-
rization method is suitable for a non-deep learning
baseline because it is efficient and requires very
little computing resources.

3.3.2 Baseline Seq2seq
Our basic Seq2Seq model is based on the Sequence
to Sequence Learning with Neural Networks paper
(Sutskever et al., 2014). This encoder-decoder
model uses Recurrent Neural Network (RNNs)
to encode the input text into a single vector, then
decodes this vector by a second RNN, which learns
to output the summary by generating one token
at a time. At each time-step, the encoder RNN
takes in the embedding of the current word e(xt),
and the hidden state from the previous time-step
ht−1, and then outputs a new hidden state ht. Once
the final word is passed through the encoder, the
decoder takes as input the hidden layers created by
the encoder. The decoder has a similar structure
as the encoder with an additional fully-connected
layer after the output from each token to form each
word of the generated headline. Each generated
word is subsequently fed into the decoder as an
input for generating the next word of the headline.

In our experiment, we tested various RNN
architectures; these include Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU),
and Bi-directional LSTM (BiLSTM) units, all
which were chosen for their ability to handle
sequential data. For our hyperparameters, we use
only a single layer that contains 256 hidden units,

Figure 2: Baseline Seq2seq (Shi et al., 2018)

with no dropouts (Lopyrev (2015)’s observations
showed that dropout does not improve the model’s
performance). We also use Cross Entropy as our
loss function and Adam as our optimizer with a
learning rate set to 0.001. These will be the default
hyperparameters as we go forward.

3.3.3 Attention
In our baseline Seq2Seq model, we pass the con-
text vector to the decoder at every time-step and
pass the context vector, embedded input word and
hidden state to the linear layer to make a prediction.
Although this reduces some information compres-
sion, the context vector still needs to contain all
of the information about the source sentence. To
solve this, we improve our previous model by intro-
ducing the additive attention mechanism from the
Bahdanau et al. (2014)’s paper, which computes
attention weights that allow the network to remem-
ber certain aspects of the input better. The attention
distribution at represents a probability distribution
over the source words and is calculated as follows:

eti = vT tanh(Whhi +Wsst + battention) (1)

at = softmax(et) (2)

In the equations above, v, Wh, Ws, battention are
learnable parameters. The attention distribution
is then used to calculate a weighted source vector
(context vector) h∗t such that the weights sum to 1
and represent a weighted average over the last hid-
den layers after processing all of the input words:

h∗t =
∑
i=0

atihi (3)

The context vector can be viewed as a represen-
tation of what has been read from the source
with a fixed size. This is computed at every



Figure 3: Seq2Seq with Attention (Shi et al., 2018)

time-step when decoding, which is concatenated
with the decoder state st and fed as input into
a fully connected layer to output the vocabulary
distribution, providing a final distribution from
which the decoder makes a prediction. This
component allows the model to pay attention to
which words from the source are most important
when generating a summary.

We incorporate this attention model to our
baseline Seq2Seq model with BiLSTM units,
which closely follows Nallapati et al. (2016)’s
work. As before, we use the same hyperparameters
during our training.

3.3.4 Teacher Forcing
In our models described so far, the tokens in the
decoder are generated one after another at each
timestep, using the prediction of the previous de-
coder as the input of the subsequent decoder. The
problem with this is that if the model predicts an in-
correct word early on, subsequent predictions will
continue to diverge from the target. This can cause
issues such as slow convergence, model instabil-
ity, and overall poor performance. To combat this,
we improve our previous models by implementing
Teacher Forcing algorithm (Williams and Zipser,
1989), a strategy that for a chosen probability, uses
the ground truth of the next token in the sequence
instead of the output of the previous decoder. In
this experiment, we add this component to the train-
ing process of our previous models, keeping all the
model architecture and hyperparameters fixed. We
used a teacher forcing ratio = 0.3. During testing,
previous ground truth tokens are unknown, so they

Figure 4: Teacher Forcing Algorithm (Shi et al., 2018)

are replaced with tokens generated by the model
itself.

3.3.5 Pointer-Generator and Coverage

Pointer-Generator:
The pointer-generator network combines our base-
line Seq2Seq with the attention model with a
pointer network that allows it to copy words for
the source text. In our implementation, the atten-
tion and vocabulary distribution is calculated as
before. Additionally, we compute a generation
probability pgen ∈ [0, 1], representing the probabil-
ity of generating a word from the vocabulary rather
than copying from the source. At timestep t, pgen
is calculated as follows:

pgen = σ(wT
h∗h

∗
t + wT

s st + wT
x xt + bpointer) (4)

Where h∗t is the context vector, st is the decoder
state, xt is the decoder input, and weights w and
scalar bpointer are learnable parameters. pgen is used
to weight and combine the vocabulary distribution
used for the generator and the attention distribution
at into a final distribution:

P (w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ati (5)

The probability of word w being produced is
equal to the sum of the probability of generating
it from the vocabulary (with probability of pgen)
and the probability of pointing it some place in the
source (with probability of 1− pgen). When train-
ing this model, we use our default hyperparameters.

Coverage:
As explained in the paper, coverage is a technique
that uses the attention distribution to keep track



of what’s been covered so far and penalize the
network for attending to the same words over
and over again. We build this on top of our
point-generator model with a coverage vector ct,
which is the sum of attention distributions over all
previous decoders:

ct =
t−1∑
t′=0

at
′

(6)

This is added as an additional input to the attention
mechanism described previously:

eti = vT tanh(Whhi+Wsst+battention+wcc
t
i) (7)

We also need to introduce an extra loss term to
penalize attending to the same locations

covlosst =
∑
i

min(ati, c
t
i) (8)

In our experiment, we build this coverage technique
on top of the pointer-generator network, maintain-
ing the same hyperparameters as before.

3.4 Evaluation

In our analysis, we use the BLEU evaluation met-
ric (Papineni et al., 2002), which calculates the
fraction of the words (n-grams) in the machine
generated summaries that appeared in the human
reference summaries and also compares the length
of the generated summary with the length of the
true headline. This can be thought of as a measure
of precision, and it is a popular metric used in NLP
that is reported to have high correlation with hu-
man judgement, which is appropriate for our text
summarization task.

4 Analysis

4.1 Quantitative Result Comparison

To reduce the computational burden, we first
conducted all the experiments on a size of 10,000
article and headline pairs’ subset data, and the
result is as shown in Table 2. The approaches we
have tried can be roughly divided into 4 categories,
including Non Deep Learning Base model, Deep
Learning Base model, Improved Deep Learning
model, and Advanced Deep Learning model.

First and foremost, as for the base model,
we implemented a linear LSA summarizer, and 3
base deep learning model using different types of

RNN units, including LSTM, GRU, and BiLSTM.
As for LSA summarizer, since it is a rule-based
model, it does not have a loss. We can see that
the BLEU score of LSA is merely 0.005, which
means the model output doesn’t quite make sense.
However, this is consistent with our intuition,
because summarization is too complex a task for
a linear model to achieve. As for deep learning
models, BiLSTM is showing the best results
of 0.015 BLEU score compared to the other
two. Possible reason might be that it utilized the
information not only from the previous context,
but also the posterior context. Therefore, based on
this, we decided to use BiLSTM as the base RNN
unit to carry on with further experiments.

Then, during the improvement part, we tried out
2 kinds of approaches, including teacher forcing
and self-attention. It is clear to see that both
teacher forcing and self-attention have managed
to improve the BLEU score from 0.015 to 0.017,
and 0.034 respectively, and together they can
dramatically increase the BLEU to 0.045. This
result can actually be credited to the advantage
of self-attention and teacher forcing, because
self-attention enables us to learn a probability
distribution that tells us which word in the source
text should be paid more attention to, which makes
up for the flaw of BiLSTM that tends to forget
the long-term dependencies. Besides, teacher
forcing is also an effective training method to
boost the performance by preventing the error from
previous prediction being passed into the next state.
Therefore, both of the methods are proven to be
effective in our application scenario.

In order to further improve our model performance
in certain scenarios, (for example, to avoid
generating faulty information), we implemented
the pointer generator and coverage structure on
the basis of BiLSTM with self-attention as the
advanced model (using teacher-forcing to train).
Surprisingly, the loss and BLEU score after adding
the pointer generator and coverage is not as good
as before. We think possible reasons might be that,
on the one hand, we changed the loss function by
adding coverage loss into it, which just increased
component of loss function; on the other hand,
although the metrics we used do not suggest
improving, after doing qualitative analysis, we
find the headline generation is actually improved,



Subset data
Model Train V alidation V alidation

Loss BLEU Loss

Base Non-DL Model LSA Summarizer / 0.005 /

Base DL Model LSTM 6.554 0.009 7.005
GRU 6.474 0.013 6.827

BiLSTM 6.055 0.015 6.879

Improved DL Model BiLSTM + TF 5.917 0.017 6.617
BiLSTM + Att 5.832 0.034 6.764

BiLSTM + Att + TF 5.502 0.045 6.502

Advanced DL Model Pointer Generator + Coverage 5.617 0.041 6.660

Table 2: Result comparison on subset data with 10,000 rows. DL for deep learning, Att for attention, TF for
teacher forcing.

which will be further explained in the next part.

After the exploration phase, we retrained the mod-
els using the full dataset and the corresponding
results and training loss curves are presented in
Figure 5 and Table 3. From the loss curve we can
see that all of them are demonstrating similar op-
timization velocity, and the trend is in consistency
with our findings in the subset data that teacher
forcing and self-attention helps improve the perfor-
mance. As for the result, it is not hard to find out
that although the metrics are improved by introduc-
ing more data, the relative trend keeps the same,
and our best model’s (BiLSTM with self-attention,
pointer generator, and coverage structure) BLEU
score 0.075 actually beats our main source paper
with BLEU of 0.010 (Lopyrev, 2015).

4.2 Qualitative Result Comparison

The sample below, one piece of the news from the
test dataset, demonstrates our implemented models’
performances qualitatively.

Figure 6: Comparison of headline generation results

The original text shows about the first fifty words
of an original piece of news, which is used as the
model input. The model output summary shows
that the base model BiLSTM fails to capture
any meaningful information in the original news
by outputting some random frequent words that
don’t make any sense. The improved model with
attention mechanism and teacher forcing manages
to capture the information of “confidential docu-
ment”. The advanced model does even a better
job by successfully capturing another important
information of “Peter Thiel”.

The sample outputs validate that the atten-
tion mechanism improved the model performance
by better locating where to look at in the original
news when generating summarization. The
capture of “Peter Thiel” shows how the pointer
generator network takes the benefit of including the
probability of outputting words directly from the
original news. Words like “Peter Thiel”, a person’s
name, could be very hard to capture by a model
that makes summarization by merely generating
similar words based on the word embeddings and
probability distributions over the vocabulary in
the entire dataset, like the one implemented as our
base model or improved model. The improved
model and the advanced model also achieve higher
BLEU scores in this sample.

5 Discussion and Conclusion

According to our work, our findings are as follow:

1. BiLSTM is the base RNN unit that has the
best performance in our application scenario,



Figure 5: Training loss curve on full dataset

Full data
Model Train V alidation V alidation

Loss BLEU Loss

Base Non-DL Model LSA Summarizer / 0.005 /

Base DL Model BiLSTM 5.262 0.064 5.739

Improved DL Model BiLSTM + TF 5.011 0.073 5.195
BiLSTM + Att 4.778 0.070 5.801

BiLSTM + Att + TF 4.363 0.079 5.143

Advanced DL Model Pointer Generator + Coverage 4.449 0.075 5.355

Table 3: Result comparison on full dataset.



(possible reason may be that BiLSTM can
utilize the information from both previous and
posterior context);

2. Self-attention can help improve generator’s
performance when dealing with long source
article (by learning a probability distribution
that tells us which part of the source text
should be paid more attention to, which makes
up for the flaw of BiLSTM that tends to forget
the long-term dependencies)

3. Teacher forcing is an effective training ap-
proach that can be used for Seq2Seq model
scenario, (to prevent the error from previous
prediction being passed into next state);

4. Pointer generator and coverage approach can
significantly reduce the occurrence of the
model generating faulty information by in-
cluding the probability of directly outputting
words from the source text;

5. Our best model (BiLSTM with self-attention,
pointer generator, and coverage structure)
beats our main source paper’s BLEU score
of 0.010 (Lopyrev, 2015) by 0.075.

If given more time, we would better clean the data,
which is one of the main barriers that limits our
model performance at this time. To further improve
our results, we can:

1. Use dynamic word embedding like ELMO,
instead of just static embedding like GloVe,
because dynamic word embedding can disam-
biguate multiple sense of the input word, thus
better represent the meaning of the word in
the context of input, thus very likely to help
the model learn the dependencies;

2. Try more state-of-the-art models. As an exper-
iment, we attempted to implement the trans-
former model from Vaswani et al. (2017)’s pa-
per. A common misconception in NLP is that-
Seq2Seq models only use RNN units. Instead,
we can use Transformers, which is solely
based on attention mechanisms to achieve any
task that can be realized by RNN. Though
unfortunately we were unsuccessful to imple-
ment this on our own due to computational
limits, if given more time, we would leverage
the open-sourced pre-trained model such as
BERT (Devlin et al., 2018) to compare state-
of-the-art results and our own.
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