
Artificial Anime Character Design: An Application of
Generative Adversarial Networks (GANs)

University of Pennsylvania | CIS 519 - Applied Machine Learning

Roy Wu wuroy@seas.upenn.edu
Riley Xu rileyx@sas.upenn.edu
Tianhao Lu tianhlu@seas.upenn.edu

Abstract
Generative Adversarial Networks (GANs) are
novel deep-learning architectures that excel in
creating artificial images. GANs have been suc-
cessfully applied to many types of images, most
notably human faces, but each category comes
with unique challenges. We focus on using GAN
to generate artificial anime character faces. We
implement three variations of GAN - DCGAN,
LSGAN, and StyleGAN, and trained on a data
set of 20,000 images. The models were evaluated
both qualitatively and with the Frechet Inception
Distance.

1. Introduction
Generative Adversarial Network (GAN) is a framework for
Deep Learning models to generate superficial data mimick-
ing a training distribution (Goodfellow et al., 2014). Face-
book’s AI research director Yann LeCun called adversar-
ial training “the most interesting idea in the last 10 years
of ML” (LeCun, 2016). GANs have been successfully ap-
plied to many image categories, including objects as com-
plicated as human faces, such as in ThisPersonDoesNotEx-
ist.com (Wang, 2019). There are many other attempts to
apply GANs on paintings, objects, and even Pokémon. In
this work, we train and generate images of character faces
from Japanese anime.

There exist few attempts applying the GAN model to the
problem of generating facial images of anime characters.
DRAGAN gives a promising result (Jin et al., 2017); how-
ever, other attempts tend to be limited to blog posts and
personal github repos (Mattya, 2016; Jayleicn, 2017; Bran-
wen, 2019), and the methodology and data samples are not
well described by these sources. Moreover, the results of
these projects are frequently defective, with effects such
as asymmetric facial features and having large swaths that
make them look like water-color paintings. Most disap-
pointingly, these authors only generated female character
faces.

In this work, we seek to improve in the generation of anime
character faces. In the following sections, we first describe
the data set that we use. Then, we detail three GAN model
architectures and show the results. Finally, we compare and
quantify the differences between the architectures.

2. Data Collection & Preprocessing
Previous works mentioned above have datasets that suffer
from high variance and noise, leading to results that were
not too promising. Our goal for the data preparation is to
find a clean, high-quality dataset and preprocess it in such
a way that it can be used seamlessly with PyTorch.

Our dataset consists of 21551 unlabeled anime faces ob-
tained from Kaggle (Rakshit, 2019). This is a cleaner
version of a dataset originally on Github (Chao, 2019)
where the images are fetched from Getchu.com and then
cropped using the anime face detection algorithm (Na-
gadomi, 2011).

The images are generally high-quality, but a few suffer
from bad crops. Almost all images have white or other-
wise minimal background. The range in art styles, pose,
expressions, and hair is sufficiently variant. Notably, this
data set does contain male characters, albeit at a smaller
proportion, and our networks are trained to generate male
faces unlike previous works.

Anime is an incredibly popular media format around the
world. However, coming up with new character designs
takes tremendous effort and skill. GANs offer the oppor-
tunity to create new and custom designs without extensive
input from a professional. This may help anime studios
dramatically shorten development times, provide inspira-
tion to professional and hobbyist character designers, and
with sufficient progress may even be able to take over some
aspects of the animation.

ThisPersonDoesNotExist.com
ThisPersonDoesNotExist.com
Getchu.com


Figure 1. Sample images in the Kaggle dataset.

We transformed and loaded the dataset using Pytorch’s Im-
ageFolder and DataLoader classes. We removed as many
of the bad samples as possible, mainly poor crops. Addi-
tionally, all images are resized to 64x64 for further conve-
nience.

3. Generative Adversarial Network
GAN uses a generator network G to generate fake samples
by mapping a latent space vector z sampled from a nor-
mal distribution into a sample G(z). GAN uses a min-max
game where discriminator network D tries to maximize its
accuracy in classifying real and fake data and G tries to
minimize the probability that D will predict its outputs are
fake (Goodfellow et al., 2014). The objective can be for-
mally expressed as:

min
G

max
D
V (D,G) = Ex[logD(x)] + Ez[log(1−D(G(z)))]

The generator and discriminator train off of each other, en-
abling a GAN to learn unsupervised. In general, the train-
ing of a GAN occurs as below:

1. Create a standard normally distributed vector z, with
arbitrary feature length.

2. Zero out gradient for G, generate fake image, and cal-
culate LG, where:

LG =
1

n

n∑
i=0

LCE(D(G(z)), 1)

3. Backpropogate LG and step up the optimizer
4. Zero out gradient for D and calculate LD, where:

LD =
1

2n

n∑
i=0

LCE(D(Xi), 1) + LCE(D(G(z)), 0)

5. Backpropogate LD and step up optimizer

While all GANs have the same basic structure detailed
above, there exist many subtleties that result in very differ-
ent implementations. We explore three implementations:
Deep Convolutional, Least Squares, and StyleGAN.

Figure 2. Overview of GAN process and data flow.

4. Deep Convolutional GAN (DCGAN)
Our base model architecture is inspired by Deep Convolu-
tional GAN (DCGAN) (Radford et al., 2015). The discrim-
inator is made up of strided convolution layers, 2d batch
norm layers, LeakyReLUs, and outputs the final probabil-
ity through a Sigmoid activation function. The generator
consists of a series of strided two dimensional convolu-
tional transpose layers, each followed by a 2d batch norm
layer and a ReLU activation. The outputs go through a tanh
function.

Figure 3. Generator architecture (Radford et al., 2015). It projects
latent vector z to a 64x64 RBG image through a series of
fractionally-strided convolutions

4.1. Training and Hyperparameter Tuning

Figure 4. DCGAN LG (left) and LD (right) during training.

Figure 4 shows LG and LD throughout our training. Some
things we watched out for during training:

1. We want to prevent the LD from going to 0 (this rep-
resents a failure mode of training).

2. Both LD and LG should not decrease monotonically
(they should oscillate around a certain loss), with LG

increasing as a whole and LD decreasing as a whole.
2



3. Display sample generated images every a certain num-
ber of iterations to watch for mode collapse.

We used a batch size of 64 and a feature length of 100 for
vector z. For both theG andD, we use Adam optimizer be-
cause it combines the best properties of the AdaGrad and
RMSProp algorithms, which can handle sparse gradients
on noisy problems. Since D learns much faster than G, we
set the learning rate for optimizer for G at 0.0005 and opti-
mizer for D at 0.0001. Additionally, we used fuzzy labels
- instead of a hard 0 or 1 as labels for the discriminator, we
set them to 0.1 and 0.9 to make the discriminator weaker.

4.2. Results

Uncurated sample images from our DCGAN model are
shown in Figure 5. The model was trained on 150 epochs.
We find these results quite promising, because most of the
generated images are convincing. However, some mistakes
are made by the model, such as twisted and broken faces,
asymmetric eyes, and non-uniformity in hair. The flaws
urge us to try new models.

Figure 5. Uncurated DCGAN generated samples.

5. Least Squares GAN (LSGAN)
A large problem with DCGAN is that it can suffer from
vanishing gradients. A variation called Least Squares
GAN (LSGAN) attempts to combat the vanishing gradi-
ents by using a loss function that provides smooth and non-
saturating gradient in discriminator D (Mao et al., 2016).
Formally, the objective functions can be expressed as such:

min
D
VLS(D) =

1

2
Ex[(D(x)− 1)2] +

1

2
Ez[(D(G(z)))2]

min
G
VLS(G) =

1

2
Ez[(D(G(z))− 1)2]

5.1. Training and Hyperparameter Tuning

The model architecture we used for LSGAN is exactly the
same as that of DCGAN, with a few minor changes. First,
we removed the sigmoid activation function at the end of
D. Moreover, we adjusted the LG and LD functions to
follow the objective functions described above. We also
use the same hyperparameters as we did for DCGAN.

5.2. Results

Uncurated samples are shown in Figure 6, trained on 150
epochs. As expected, LSGAN performs more stable during
the learning process. Unfortunately, our generated samples
appear to have more artifacts and less variation.

Figure 6. Uncurated LSGAN generated samples.

6. StyleGAN
StyleGAN and StyleGAN2 are new state-of-the-art GAN
architectures developed by a team from NVIDIA (Karras
et al., 2018; 2019). These architectures address many of
the shortcomings of previous GAN implementations and
dramatically increase image quality.

Figure 7. StyleGAN architecture (Karras et al., 2018).

StyleGAN uses a progressive architecture (Karras et al.,
2017). Both the generator and discriminator are first trained
only on 4x4 pixel images. After sufficient progress, a new
layer block is added to both networks to handle 8x8 im-
ages. This doubling procedure continues until reaching the
desired image size. This progression allows the generator
to learn fine features after already having learned coarse
features, significantly easing the training.

3



Figure 8. Uncurated StyleGAN generated samples; random (left)
and style mixing (right).

Another key innovation is the adoption of techniques from
style-transfer learning. Instead of inputting the latent vec-
tor directly into the first layer of the convolution, there is a
separate mapping network that processes the latent vector
into an intermediate latent vector. This is then transformed
into a style vector yi, via a learned affine transformation,
and fed into the synthesis network between each convolu-
tion layer. The style transfer is done via adaptive instance
normalization (AdaIN):

AdaIN(x, yi) = yi,s
x− x̄
σ(x)

+ yi,b.

Above, yi = (yi,s, yi,b) is the style scale and bias in layer
i, and x is the input activations from the previous layer.

6.1. Results

Using a baseline StyleGAN architecture implemented in
PyTorch, we achieved remarkable results after 150 epochs
of training. Uncurated sample fakes are shown in Figure 8.
Artifacts rarely appear, and there is huge variation between
samples. By eye we are generally unable to distinguish fake
from real images.

6.2. Mixing Regularization

A large benefit of separating out the mapping network and
using AdaIN in StyleGAN is the ability to mix styles.
Specifically, midway through generation, the latent vector
can be swapped. This is done during training as a form
of regularization, to force independence between styles in
adjacent layers. Style mixing can also be done manually
when generating fakes to manually alter high-level fea-
tures, such as hair color or pose. An example array of mix-
ing styles is shown on the right in Figure 8.

7. Quantifying Results
A common metric to quantify the quality of generated im-
ages is the Frechet Inception Distance (FID) (Heusel et al.,
2017). FID is an improvement on the Inception Score (Sal-
imans et al., 2016) and calculates the similarity between
two sets of images, unsupervised. As with Inception Score,

FID uses the Inception V3 model, a trained classifier on
1000 objects (Google, 2015). However, instead of using
the output of the Inception V3 model, FID calculates the
Frechet distance of the activations in the coding layer. Be-
cause classifier networks tend to learn general features, us-
ing the coding layer generalizes the Inception Score to ar-
bitrary image sets with good effect.

Table 1. FID calculations for various GAN implementations.

GAN FID
DCGAN 64.446
LSGAN 149.210
StyleGAN 44.704

We calculated the FIDs comparing generated images from
each GAN implementation with the original data set. All
implementations were trained on 150 epochs. The results
are summarized in Table 1; note lower FID scores are bet-
ter. StyleGAN outperformed DCGAN, while LSGAN seri-
ously underperformed. These observations corroborate our
qualitative assessments.

8. Conclusion and Future Work
In this work, we explored the artificial creation of the anime
characters using GANs. By extracting a clean data set and
introducing several practical training strategies, we showed
that DCGANs can produce convincing fakes. We then im-
plemented StyleGAN, a major improvement on DCGAN
both qualitatively and by FID score. Additionally, Style-
GAN can be trivially used to mix styles. This work has
demonstrated that GANs can be readily applied to the
anime industry, allowing for streamlined design of new
characters.

With the power of style mixing, many possibilities exist for
future developments. Assuming a data set with labels, the
model can learn to generate specific features on-demand,
such as hair color or pose. Other directions are to improve
the final resolution of generated images, or to generate full-
body designs.

9. Acknowledgement
We acknowledge NVIDIA for their open-source StyleGAN
implementation (Karras et al., 2019), Google for the Incep-
tion V3 model (Google, 2015), and mseitzer for the FID
calculation code(Mseitzer, 2020). We would also like to
thank Eric Eaton, Dinesh Jayaraman, and all the TAs for
putting together an exciting class.

Our code can be found at the following GitHub link:
https://github.com/roynwu/Artificial-Anime-Character-
Design/

4

https://github.com/roynwu/Artificial-Anime-Character-Design/
https://github.com/roynwu/Artificial-Anime-Character-Design/


References
Branwen, Gwern. Making anime faces with stylegan. 2019.

URL https://www.gwern.net/Faces.

Chao, Brian. Anime-face-dataset, 2019. URL
https://github.com/Mckinsey666/
Anime-Face-Dataset.

Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi,
Xu, Bing, Warde-Farley, David, Ozair, Sherjil,
Courville, Aaron, and Bengio, Yoshua. Generative ad-
versarial networks, 2014.

Google. Tensorflow hub, 2015. URL http://
download.tensorflow.org/models/image/
imagenet/inception-2015-12-05.tgz.

Heusel, Martin, Ramsauer, Hubert, Unterthiner, Thomas,
Nessler, Bernhard, Klambauer, Günter, and Hochre-
iter, Sepp. Gans trained by a two time-scale up-
date rule converge to a nash equilibrium. CoRR,
abs/1706.08500, 2017. URL http://arxiv.org/
abs/1706.08500.

Jayleicn. animegan, 2017. URL https://github.
com/jayleicn/animeGAN.

Jin, Yanghua, Zhang, Jiakai, Li, Minjun, Tian, Yingtao,
Zhu, Huachun, and Fang, Zhihao. Towards the auto-
matic anime characters creation with generative adver-
sarial networks. CoRR, abs/1708.05509, 2017. URL
http://arxiv.org/abs/1708.05509.

Karras, Tero, Aila, Timo, Laine, Samuli, and Lehtinen,
Jaakko. Progressive growing of gans for improved qual-
ity, stability, and variation. CoRR, abs/1710.10196,
2017. URL http://arxiv.org/abs/1710.
10196.

Karras, Tero, Laine, Samuli, and Aila, Timo. A style-
based generator architecture for generative adversarial
networks. CoRR, abs/1812.04948, 2018. URL http:
//arxiv.org/abs/1812.04948.

Karras, Tero, Laine, Samuli, Aittala, Miika, Hellsten,
Janne, Lehtinen, Jaakko, and Aila, Timo. Analyzing and
improving the image quality of stylegan, 2019.

LeCun, Yann. What are some recent and poten-
tially upcoming breakthroughs in deep learn-
ing?, 2016. URL https://www.quora.com/
What-are-some-recent-and-potentially-
upcoming-breakthroughs-in-deep-
learning/answer/Yann-LeCun.

Mao, Xudong, Li, Qing, Xie, Haoran, Lau, Raymond Y. K.,
Wang, Zhen, and Smolley, Stephen Paul. Least squares
generative adversarial networks, 2016.

Mattya. chainer-dcgan, 2016. URL https://github.
com/mattya/chainer-DCGAN.

Mseitzer. Pytorch-fid, 2020. URL https://github.
com/mseitzer/pytorch-fid.

Nagadomi. A face detector for anime/manga using opencv,
2011. URL https://github.com/nagadomi/
lbpcascade_animeface.

Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsu-
pervised representation learning with deep convolutional
generative adversarial networks. CoRR, abs/1511.06434,
2015.

Rakshit, Soumik. Anime faces, 2019. URL
https://www.kaggle.com/soumikrakshit/
anime-faces.

Salimans, Tim, Goodfellow, Ian J., Zaremba, Wojciech,
Cheung, Vicki, Radford, Alec, and Chen, Xi. Improved
techniques for training gans. CoRR, abs/1606.03498,
2016. URL http://arxiv.org/abs/1606.
03498.

Wang, Philip. Thispersondoesnotexist, 2019. URL
https://www.thispersondoesnotexist.
com/.

5

https://www.gwern.net/Faces
https://github.com/Mckinsey666/Anime-Face-Dataset
https://github.com/Mckinsey666/Anime-Face-Dataset
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://github.com/jayleicn/animeGAN
https://github.com/jayleicn/animeGAN
http://arxiv.org/abs/1708.05509
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://www.quora.com/What-are-some-recent-and-potentially-
https://www.quora.com/What-are-some-recent-and-potentially-
upcoming-breakthroughs-in-deep-
learning/answer/Yann-LeCun
https://github.com/mattya/chainer-DCGAN
https://github.com/mattya/chainer-DCGAN
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://github.com/nagadomi/lbpcascade_animeface
https://github.com/nagadomi/lbpcascade_animeface
https://www.kaggle.com/soumikrakshit/anime-faces
https://www.kaggle.com/soumikrakshit/anime-faces
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
https://www.thispersondoesnotexist.com/
https://www.thispersondoesnotexist.com/

